8 research outputs found

    Maximizing throughput in zero-buffer tandem lines with dedicated and flexible servers

    Get PDF
    Abstract For tandem queues with no buffer spaces and both dedicated and flexible servers, we study how flexible servers should be assigned to maximize the throughput. When there is one flexible server and two stations each with a dedicated server, we completely characterize the optimal policy. We use the insights gained from applying the Policy Iteration algorithm on systems with three, four, and five stations to devise heuristics for systems of arbitrary size. These heuristics are verified by numerical analysis. We also discuss the throughput improvement, when for a given server assignment, dedicated servers are changed to flexible servers

    Maximizing throughput in zero-buffer tandem lines with dedicated and flexible servers

    No full text
    Abstract For tandem queues with no buffer spaces and both dedicated and flexible servers, we study how flexible servers should be assigned to maximize the throughput. When there is one flexible server and two stations each with a dedicated server, we completely characterize the optimal policy. We use the insights gained from applying the Policy Iteration algorithm on systems with three, four, and five stations to devise heuristics for systems of arbitrary size. These heuristics are verified by numerical analysis. We also discuss the throughput improvement, when for a given server assignment, dedicated servers are changed to flexible servers

    Maximizing throughput in zero-buffer tandem lines with dedicated and flexible servers

    No full text
    <div><p>For tandem queues with no buffer spaces and both dedicated and flexible servers, this article studies how flexible servers should be assigned to maximize the throughput. The optimal policy is completely characterized. Insights gained from applying the Policy Iteration algorithm to systems with three, four, and five stations are used to devise heuristics for systems of arbitrary size. These heuristics are verified by numerical analysis. Throughput improvement obtained when, for a given server assignment, dedicated servers are changed to flexible servers.</p></div

    A review of the methods of modeling multi-phase flows within different microchannels shapes and their applications

    No full text
    In industrial processes, the microtechnology concept refers to the operation of small devices that integrate the elements of operational and reaction units to save energy and space. The advancement of knowledge in the field of microfluidics has resulted in fabricating devices with different applications in micro and nanoscales. Micro-and nano-devices can provide energy-efficient systems due to their high thermal performance. Fluid flow in microchannels and microstructures has been widely considered by researchers in the last two decades. In this paper, a review study on fluid flow within microstructures is performed. The present study aims to present the results obtained in previous studies on this type of system. First, different types of flows in microchannels are examined. The present article will then review previous articles and present a general summary in each section. Then, the multi-phase flows inside the microchannels are discussed, and the flows inside the micropumps, microturbines, and micromixers are evaluated. According to the literature review, it is found that the use of microstructures enhances energy efficiency. The results of previous investigations revealed that the use of nanofluids as a working fluid in microstructures improves energy efficiency. Previous studies have demonstrated special attention to the design aspects of microchannels and micro-devices compared to other design strategies to improve their performance. Finally, general concluding remarks are presented, and the existing challenges in the use of these devices and suggestions for future investigations are presented.Emerging Material
    corecore